Democratic Socialist Republic of Sri Lanka

Ministry of Agriculture (MoA) Agriculture Sector Modernization Project (ASMP)

# Assessment of Current Pest Management Strategies Implemented by the MoA &

# **Preparation of a Pest Management Action Plan**

**Final Report** 

# **VOLUME 4**

# **PM Guide for Training & Promotion**

November 2019

Prepared by: S & P Holdings (Pvt) Ltd., 74/6, Stanley Place, Pepiliyana Road, Nugegoda, Sri Lanka

# **Table of Contents**

| 1.         | Introduction                                                                               | .3 |
|------------|--------------------------------------------------------------------------------------------|----|
| 2.         | History of PM                                                                              | .7 |
| 3.         | PM approach                                                                                | .9 |
| 4.         | Ecological engineering for pest management                                                 | 10 |
| 5.         | Application of PM –PHM                                                                     | 12 |
| 6.<br>prov | General guidelines to training & promotion of PM tools in FPOs in ASMP project vinces.     | 13 |
| 7.<br>prov | Stage- wise crop fact sheets for promotion/ adoption of PM tools in FPOs under ATDP vinces | 23 |

# 1. Introduction

A guide to promote PM tools and adoption of PM best practices in small farm crop production systems is developed and recommended to integrate to training and technology transfer interventions as appropriate. This guide identifies different practices/ technologies under each PM tools considering the stage-wise crop growth and production cycle.

Pests are defined as an organism that directly or indirectly interferes with the interest of man. The organism may not be considered as a pest until its activities and life processes cause any harm to human health, convenience, comforts or profits. Accordingly the pest of different types comprise pests affecting food, fiber, shelter; pests of public health; and nuisance pests.

## 1. Origin & types of Pests

Since the beginning of classical agriculture in 8000 BC, diverse organisms continually compete with humans at both primary and secondary stages of agricultural production. Collectively pests are identified as below;

Insects, mites, arachnids, ticks, other ecto parasites of animals

Nematodes and harmful parasitic worms of plants and animals

Fungi, Bacteria, Viruses, Protozoa

Poisonous plants, Weeds

Birds and mammals

#### 2. Traceability of pest origin

Naturally occurring pests; Evolved naturally in association with man/ animal and plants

Accidental pest; (alien pests) accidentally/ unintentionally introduced outside their native range.

Monoculture ecosystems; Crops grown provide dense aggregation/ availability of abundant food resources encourages proliferation and increases pest population.

Cultural practices; continuous cultivation of land without a resting period or rehabilitation allows for building up of pests.

Inappropriate use of pesticides; Prolonged/ misuse of pesticides eliminate natural enemies and creates pesticides resistance in pest populations.

Storage of crops; Increased food security concerns promotes storage of food. This led to provide more conducive platforms for evolving pests of storage produce.

**Insects**; Thrives in wide range of environmental conditions in earth's surface, within the soil, in water, every area on earth, than any other group of animal. It was reported that the

world is infested by more than 8000 species of insects. The insects by nature are small in size, high rate of re-productivity, adaptability in every habitat where crop production takes place causing high competition with man for crops grown by damaging them indirectly or directly on yield/quality. Insects cause damage in many ways;

Feed on leaves. Roots/ seed/ nuts, tunnel/ bore in stems/ stalks/ branches, suck sap from leaves/ stems/ roots/ shoots/ flowers/ fruits and carry plant disease organisms.

Thrips; found in flowers, buds, tender leaves-cause misshapen or poorly developed flowers/ buds/ fruits/ leaves.

Aphids/ leaf hoppers/ spittlebug/ scale insects; suck sap from plants, carry plant disease agents, reduce plant vigour/ vitality/ yield.

Moths and butterfly; damage caused during the larvae stage (caterpillar) of the insect damaging leaves, stems, tubers and fruits

Beetles and weevils; adult and larvae stage causes damage to stored food and plants.

**Mites**- varied behaviour and habitat and found in soil/water and Arial. They feed on plant/plant derivatives/ stored food and grains. In stored food, diverse types of mites are infested and not detected until injury is noticed. Feeding on live plants/ parts cause whitish/reddish or brown foliage/ buds. Also cause scars on fruits, Crop become weak, leaf/ fruit shredding/ forms of blemishes leading to low market attraction.

**Snails & slugs** - Snails are covered with hard shell and slugs have no shells. They both feed on foliage. These pests feed on lawn, landscape planting and green houses and crops such as Yams, Maize, and vegetables.

**Vertebrate pests**- mainly mammals and birds. Birds of various species are known to be grain eaters and most destructive are parrots, peacocks, and quail among others. The important type of crops these pests feed on include rice, maize, millet, sesame, long bean, green gram etc.

Among the mammals, rats/ mice feed on rice, ground nuts and yams. Squirrels and rabbits damages the young plants by eating the shoots causing plant death. Larger vertebrates like monkeys and wild boars are capable of reducing the crop yields by eating/ destroying the fruits/ yams/ falling plants/ branches. The elephant damages rice crops, vegetables, melons and maize as often reported by farmers. The severe losses due to mammals are yet to be mitigated and farmers continue to encroach forest lands by clearing and making room for large mammal to enter the cultivated lands where an abundance of food is available. Thus, the conflict continues.

**Weeds-** is a plant which is out of place. It may be annuals, biennial and perennials. Weeds causes an increase in the cost of production, reduces yield by competing for resources, provide host to insects and its life cycle can be poisonous or contaminate foods.

Common annual Weeds- grasses, sedges and broad-leaf weeds including; *Echinochloa* spp., *Ischaemum rugosum, Leptochloa chinensis, Cyperus difformis, Cyperus iria, Fimbristylis* spp. *Ludwigia* spp.*Eclipta alba, Isachne globosa* in rice fields.

Annual weeds in legume cultivation *Digitaria sanguinalis, Echinochloa* spp.,*Eleusine indica Lolium* spp., *Cleome* spp.,*Portulaca oleracea, Ageratum conizoides,Digitaria* spp

Annual weeds in Onion cultivation- - *Sida acuta, Amaranthus* spp., *Cleome* spp. *Digitaria*, spp., *Echinochloa* spp. *Setaria*, Spp, *Eleusine indica* 

Annual weeds in Maize cultivation- *Sida acuta, Amaranthus* spp. *Cleome* spp. *Digitaria* spp., *Echinochloa* spp. *Setaria* Spp, *Eleusine indica,* 

**Disease causing pests**- These live and feed on plants and are responsible for causing harm to the plants normal growth. Most common causal agents are nematodes, fungi, bacteria and virus.

Nematodes- most of them feed on or inside the roots. Some feed above the ground plant parts (leaves, stems and seed). They may feed at one location or move through roots or other plant parts by puncture plant cells and feed on the cell content. Nematodes do not kill the plants but weaken the plant growth, reducing the vigour and makes it susceptible to other disease agents.

Fungi- are responsible for a majority of plant diseases. The main categories of fungi causing most of the plant diseases are identified as Phycomycetes, Ascomycetes, Basidomycetes and fungi imperfecti.

Bacteria- responsible for soft, mushy, odorous regions on leaves or stem causing rings of different shaped lesions on various parts of plants.

Viruses- cause plant diseases that are carried by insects (vectors aphids/ plant hoppers) and they are recognized by their effects on plants. Also carried easily in plant bulbs, roots, cuttings, suckers and seeds. It is evident it can be transmitted by tools used for pruning/ harvesting, machines land preparation/ inter-cultivating and men by contact with plants etc.

Pest characteristics –feeding and reproduction are major determinants of pest status. Pest status of any organism is a function of the degree of loss it causes to humans in economic terms. It is the rank on the status of a pest relative to economies of control. The major determinants of pest status are characteristics and density.

Indirect damage; Pests feed on non-marketable parts of plants, causing yield loss.

Direct damage; Feeds on marketable parts of plant, causing quality loss.

Vector diseases; Transmit organisms that cause plant disease, causing yield loss and quality loss.

Contamination; Presence of pests, pest excretes, pest parts, reduces the value of product, loss of quality.

Pest density – identifies the abundance of individuals and types of nuisance or injury inflicted. The economic injury level is computed based on the density of pests. It is determined by the lowest population density that cause economic damage. The parameters used include;

The cost of control

The market value of the crop

The yield loss attributable to unit number of insects

The effective control

# 2. History of PM

History has shown that man at any point of time has never achieved his objective of sustained economic yield to ensure food security for all, despite innovative milestones in agriculture mechanization and technology approaches. It is widely recognized that the crop losses are associated with pests. There is no records available that any crop of economic importance to man had not been attacked by pests. Globally the crop losses due to pests is estimated at 35% of potential yield. Unless vigorous and concerted efforts are made to improve agricultural productivity along with strategies to tackle the pest problem, a catastrophic food shortage may soon be imminent in the world.

It is clear that many factors interact with each other in determining the crop yield. However, it is clear that pest densities cause significant damages to crops. Therefore it is important that pest problems/ organisms be correctly identified and economics of losses or damage be adequately assessed to make appropriate decisions on the measures of control to be applied.

Insecticides usage was first recorded in 2500BC by Sumerians (region of ancient Mesopotamia/ currently – Iraq and Kuwait), where sulphur compounds were used to control insects/ mites. In 1500BC, a description of cultural control by manipulating the planting dates was established. During 1200 BC the botanical insecticides were identified and used for seed treatments and as fungicides. By 950BC the burning method was introduce as a traditional control practice. During 200BC the Romans used oil sprays derived from plant extracts for pest control. Pests such as caterpillars, locusts, and rodents were recorded in the ancient chronicles of Rome, Egypt and Greece. In13BC the first rat proof granary was built by Roman Architect, Marcus Pollio. In 300AD predatory ant (Oecphylla smaragdina) the first biological control was introduced in citrus orchards in China using Bamboo Bridges to connect trees for the ants to move between trees to predate on caterpillars and beetles. In 1000-1300AD a mechanical weed control device; hoe was introduced along with crop rotation and cultivation methods However, the scientific developments of biological understanding of the nature of pests was recorded only after the 15<sup>th</sup> Century. In 1732 farmers begn to grow crops in rows to facilitate weeding. The Agriculture revolution spurred in EU in 1750 to 1880, with intensive crop protection/international trade and discovery of botanical insecticides Pyrethrum & Derris. Also the biological control of the potato leaf eating caterpillar identified resistant varieties for control of powdery mildew in Grapes, which led to the discovery of the first commercial spraying machine. In 1901 the first successful biological control of Lantana weed in USA made headlines. In 1909, the breeding and development of fusarium wilt resistant varieties for melon, cowpea and cotton was produced. The year 1944 saw the dawn of the first hormone based herbicide 2-4 D. Introduction of the concept of economic threshold, economic injury levels and integrated control was observed in 1959. In 1960 the first insect sex pheromone was isolated, identified and synthesized in the gypsy moth. Environmental Awareness during the 1960s grew multifold – a new awareness of ecology and the environmental impact of pesticide pollution resulted in a public outcry about environmental contamination found in the air and foul water found in rivers and streams. The concept of PM introduced in 1961.

Integrated Pest Management- In 1967 the term IPM was introduced. 1972 saw the release of Bacillus thuringenisis (BT) for control of lepidopterous pests. In 1973-1975 development and release of synthetic pyrethroids insecticides; permethrin and cypermethrin. IPM was adopted as policy by various world governments during the 70's and 80's. In 1985 India and Malaysia declared IPM as official Ministerial Policy. In the 1980s IPM was introduced in Sri Lanka, mainly for rice farming under irrigation settlement schemes. In 1986 Germany make IPM official policy through the Plant Protection Act. Indonesia, Philippines enforce IPM implicitly in presidential decree. In 1987 IPM is implicit in parliamentary decisions in Denmark and Sweden. In 1988 Indonesia recorded major success in implementing IPM for rice cultivation. In the year 1991 the Netherland cabinet decision for multiyear crop protection plan was reported. In 1993 it was reported that 504 insect species are known to be resistant to at least one formulation of insecticides. At least 17 species of insects are resistant to all major class of insecticides. 150 fungi/ other plant pathogens are resistant to nearly all systemic fungicides. Five kinds of rats are known to be resistant to the chemicals used against them and 100 weed bio types and 84 species become resistant to weedicides. In 1997 ETL for IPM published.

Yet the struggle against pests continues due to inadequate attention needed to consider the different methods/ contribution of crop production practices/ technologies, environmental and human safety aspects, before pushing for hazardous chemical methods.

The modern PM involves the use of available practices/technologies to keep pests below economically harmful levels while protecting the environment and humans from hazards. It is not solely the pest control measures that are considered in PM but the Crop tolerance to pest attack is also important. This is greatly influenced by growing conditions. Accordingly the agronomic practices such as land preparation, water availability, soil fertility, nutrients. etc., affect the general health of crops that contribute towards the strength of the crop to withstand the pest attack. However, the challenge lies on the knowledge skills and abilities of farmers and extension services to promote/ adopt appropriate plant health management technologies for control of pests below injury levels and recognize the relevant action to be implemented in order to combat any pest problem.

# 3. PM approach

This is not altogether a new concept. It was practiced before the advent of modern chemicals. Dates of planting of a crop were carefully studied to ensure that a crop was not being planted when it would encounter severe pest problems, cultural practices such as ploughing after harvest, timely weed control, well timed irrigation and a reduced use of fertilizers all contributed to reduced pest population. Most of these methods were curtailed when modern pesticides become available. It was thought that these chemicals alone could control pests, but now we know that this is not possible, and the single method of approach to pest control is not feasible. Hence, an ecological approach in which utilization of all available techniques of pest control to reduce and maintain the pest population at levels below economic injury level is followed. Pest management is to implemented 24 hours a day, every day of the year.

This is possible and must be integrated into the cultivator's daily thinking and routine of activities. PM technologies/ practices are a way forward in controlling pests by adoption of Plant Health Management (PHM) technologies that will cover all aspects on Crop management (Integrated Crop Management-ICM-) and Soil Health Management (SHM). ICM integrates the practices on IPM, Integrated Water Management (IWM), and Integrated Nutrient Management (INM). Accordingly the PM is a broad concept that incorporates/ considers all aspects of PHM; IPM, IWM, INM, and SHM. Hence the PHM is impacted by several factors; soil health, nutrient management, abiotic stresses, pest populations, ecological balance of pests and beneficiary insects. In order to reduce crop losses due to pests, expertise is required in plant health management (PHM), the science and practice of understanding and overcoming biotic (living things that directly/ indirectly affect the organisms/ environment) and abiotic (sunlight, temperature, rainfall, climate and soil conditions) factors that limit plants from achieving their full genetic potential as crops.

# 4. Ecological engineering for pest management

Ecological engineering for pest management has recently emerged as a paradigm for considering pest management approaches that rely on the use of cultural techniques to effect habitat manipulation and to enhance biological control. The cultural practices are informed by ecological knowledge rather than on high technology approaches such as synthetic pesticides and genetically engineered crops (Gurr et al. 2004).

### Natural enemies may require;

1. Food in the form of pollen and nectar for adult natural enemies.

2. Shelters such as off seasonal sites, moderate microclimate, etc are needed.

3. Natural enemies may also require an alternate host when the primary hosts are not present.

Ecological engineering for pest management – Above ground:

- Raising the flowering plants / compatible cash crops along the field border by arranging shorter plants towards main crop and taller plants towards the border to attract natural enemies as well as to avoid immigrating pest population.
- Growing flowering plants on the internal bunds inside the field.
- Not to uproot weed plants which grow naturally like Tridax procumbent, Ageratum sp. Alternanthera sp., which act as nectar source for natural enemies,
- Not to apply broad spectrum chemical pesticides, when the. P: D (pest; Defender ratio) is favorable. The plant compensation ability should also be considered before applying chemical pesticides.
- Ecological engineering for pest management Below ground:
  - Crop rotations with leguminous plants which enhance nitrogen content.
  - Keeping soils covered year-round with living vegetation and/or crop residue.
  - Adding organic matter in the form of FYM, Vermicomposting, crop residue which enhance below ground biodiversity.
  - Reducing tillage intensity so that hibernating natural enemies can be saved.
  - Applying balanced dose of nutrients using bio fertilizers.
  - Apply mychorrhiza and Plant Growth Promoting Rhizobacteria
  - Applying Trichoderma as seed and nursery treatment and Pseudomonas fluorescens as seed, nursery treatment and soil application (if commercial products are used, check for label claim).

Due to enhancement of biodiversity by the flowering plants, the number of parasitoids and predatory natural enemies will also increase due to availability of nectar, pollen, fruits,

insects, etc. The major predators are a wide variety of spiders, lady bird beetles, long horned grasshoppers, Chrysoperla, earwigs, etc.

# 5. Application of PM – PHM

As described above, the PM (PHM) is considered the holistic approach based on various criteria governing the selection and adoption of PM measures/technologies which is necessary to encourage the departure from the use of single control methods in small farm agriculture production. Accordingly, the approaches identified through the PM tools combined with modern crop production technologies are capable of producing desired results. Thus success of the PM program depends on a wide array of operational factors determined by nature pests, farming systems, environment, type of control, logistics, etc.

The following guidelines training/ promotion and adoption of PM tools are established through FPOs in the project provinces. The stage wise adoption of PM technologies to be established accordingly and to be based on the crops selected. A sample of the PM fact sheet is included at the end of the general guidelines on PM technologies.

| PM tool                             | Activity                             | Technology/Practice/methods                                                                                                                                                                                        | Relevance to suppress pest incidence                                                                                                                             | Promotional strategy                                                                     |
|-------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Cultural/<br>Agronomic<br>practices | Land<br>preparation/<br>pre planting | Cleaning dead/diseased plants/ plant<br>parts/roots                                                                                                                                                                | Destroys stages of pest life cycle (egg/<br>Caterpillar/pupa)                                                                                                    | Training/ demonstration                                                                  |
|                                     |                                      | Deep ploughing –using a disc at least once<br>a year                                                                                                                                                               | Reducing the pest population by<br>destroying eggs/ caterpillars/<br>Nematodes Hibernating pupa/ cysts<br>exposed to sunlight, predatory birds and<br>destroyed. | Training/educating farmers.                                                              |
|                                     |                                      |                                                                                                                                                                                                                    | Improves the soil aeration/<br>drainage/root zone depth.<br>Vigorous/healthy plant growth                                                                        | Field demonstration                                                                      |
|                                     | Soil<br>management                   | Soil testing-fertility<br>Microorganisms/composition/moisture<br>holding capacity                                                                                                                                  | Decide on best recommended<br>nutrient/organic matter for select<br>plants. Vigorous/healthy plant growth                                                        | Guide farmers for soil testing /INM practices                                            |
|                                     |                                      | Stale seed bed –prepare the seed bed<br>irrigate and allow for 7-10 days to emerge<br>the weeds. Followed by shallow (3-4cm)<br>tillage using a rake. Deep tillage will bring<br>in the weed seeds from deep soil. | Reduce the weeds.<br>Vigorous/healthy plant growth                                                                                                               | Demonstrate and train farmers in<br>techniques to remove weeds under<br>stale seed beds. |
|                                     | Soil<br>treatments                   | Managing the soil acidity level,<br>fumigation/sterilization, rehabilitation<br>Solarization; cover planting beds with<br>45gauge(0.45mm) polythene for 10-15<br>days before planting                              | Reducing incidence of soil borne<br>diseases/pests. Creating ideal<br>environment for Vigorous/ healthy plant<br>growth.                                         | Increase skills of FPOs                                                                  |
|                                     | Raising                              | Introduce nursery on soil- less culture.                                                                                                                                                                           | Transplanting Stress/shock/ damages                                                                                                                              | Increase farmer awareness and                                                            |

# 6. General guidelines to training & promotion of PM tools in FPOs in ASMP project provinces.

| PM tool | Activity                    | Technology/Practice/methods                                                                                                                                                                                              | Relevance to suppress pest incidence                                                                                      | Promotional strategy                                                                                       |
|---------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|         | planting<br>materials       | Planting trays with compact pellets for all<br>vegetables.<br>Use sterilized planting media for raising<br>fruit plants.                                                                                                 | due to pulling seedlings avoided. Plant<br>withstands/ increases tolerance to<br>diseases pests.                          | demonstrate the potentials with exposure visits.                                                           |
|         |                             | Lengthen the nursery period during climate change conditions.                                                                                                                                                            | Delay transplanting and manage nursery<br>plants to withstand the climate change<br>and save seedlings from pest attacks. | Train farmers to observe and<br>identify climate change status as a<br>group activity. PMC to be involved. |
|         | Seed selection              | Select seeds which are resistant/tolerant<br>to pests and diseases in the farming area.<br>Care should be paid in selecting new<br>varieties which are not specifically tested<br>for the selected location or the area. | Reduce pest attacks in vegetative growth                                                                                  | Training and advice<br>PMC to be involved                                                                  |
|         |                             | Use healthy/high viability/ certified seeds free from weed/other type seed.                                                                                                                                              | Maintains optimum growth of plant<br>strengthening tolerant level with evenly<br>grown plants within the FPO.             | Training & advice<br>PMC to be involved                                                                    |
|         | Crop rotation               | Rotational planting of different crop<br>families/ varieties and mix<br>cropping/intercropping of selected<br>varieties of different families. Increase<br>the productivity of each land unit.                           | Destroys pest life cycle, population build<br>up is limited, due to changing host<br>plants.                              | Enhance FPO knowledge and skills with scientific inputs/advice.                                            |
|         | Crop/Farm<br>waste disposal | Maintain good hygiene and environment cleanliness. Remove all weeds around the cultivation.                                                                                                                              | good sanitation of crop and<br>surroundings help in reducing<br>pest/disease attack                                       | Improve FPO attitudes on field /crop<br>hygiene                                                            |
|         | Time of planting            | Planting schedule determined by observing climate and pest life cycle                                                                                                                                                    | Uniform planting by FPOs helps to minimize crop damages due to pest and                                                   | Organize pre seasonal cultivation<br>meetings-PMC to be involved                                           |

| PM tool | Activity                | Technology/Practice/methods                                                                                                                          | Relevance to suppress pest incidence                                                                  | Promotional strategy                                                                           |
|---------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|         |                         | depending on the crop<br>Avoid planting in wet weather                                                                                               | diseases.                                                                                             |                                                                                                |
|         | Plant spacing           | Use recommended plant spacing and densities.                                                                                                         | Increased plant health and tolerance to pest & disease                                                | Training for FPOs to identify the different crop spacing and effects on viold (past & diseases |
|         |                         | Dense planting requires special care and attention.                                                                                                  | manipulate the plant structure to allow healthy plant growth                                          | - yield/pest & diseases                                                                        |
|         | Training/<br>pruning    | Based on type of crop use recommended type of trellises, support structures, for                                                                     | Establish plant structure that allows more light penetration, maintain crop                           | Training, demonstration and field exposure visits for FPOs                                     |
|         |                         | climbing plants<br>overlapping/overcrowding branches<br>pruned Pruning/training the plant to<br>develop a strong plant frame                         | sanitation, easy observations for pest/<br>diseases and increase productivity                         | PMC to be involved                                                                             |
|         |                         | Cleaning the trees after harvesting,<br>remove diseased/ malformed/dried/dead<br>parts, and cobwebs, collect all fallen plant<br>parts/fruits /stems | Sanitized crop environment will reduce the incidence of pest & diseases.                              |                                                                                                |
|         | Nutrients<br>management | Identifying available soil nutrients and agro ecological regions.                                                                                    | Determine appropriate nutrients with<br>required rates/intervals to achieve<br>vigorous plant growth. |                                                                                                |
|         |                         | Use recommended rates of different<br>nutrients and enable intervals for<br>application.                                                             | Strengthen the tissues and protect from pest attack.                                                  | Enhance knowledge and skills by<br>participatory<br>training/experiments/demonstration         |
|         |                         | Foliar nutrient supply<br>Hormone used for fruit setting/control of                                                                                  | Increase crop resistance for pest & disease                                                           |                                                                                                |

| PM tool | Activity                      | Technology/Practice/methods                                                                                                    | Relevance to suppress pest incidence                                                                                                                                                                                                                   | Promotional strategy                                                                                     |
|---------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|         |                               | malformation.<br>Be alert about the farmers' non<br>recommended practices and help them to<br>correct those if not effective   | improve the yield/quality, minimize the flower drop                                                                                                                                                                                                    |                                                                                                          |
|         |                               | Organic manure – Poultry litter/cattle<br>dung/FYM/ Vermicomposting.                                                           | Improve the soil health and plant health.<br>Increase crop ability to withstand pest<br>attacks.<br>Green Manure crops sunhemp, Green<br>Gram and cowpea raised and<br>incorporated                                                                    |                                                                                                          |
|         | Water<br>management           | Identify crop water requirement. Maintain<br>optimum soil moisture. Use modern<br>irrigation systems<br>Avoid flood irrigation | Stress free plant growth. Mitigates the<br>climate change challenges. Reduces the<br>cost of labour. Avoid issues on labour<br>health. No water logging. Low<br>infestation of pest & disease.                                                         | Training /demonstration on<br>designing/installation and<br>maintenance for micro irrigation<br>systems. |
|         | Border<br>crops/trap<br>crops | Create live plant fences/grow guard crops around the main crop                                                                 | Tall crops in border crop like sorghum,<br>maize, agate(sesbania grandiflora)<br>restrict the white fly/Aphids population<br>inside the crop area                                                                                                      | Participatory Training                                                                                   |
|         |                               | Intercropping with native /introduced pest<br>repellant plant.<br>Chrysanthemum Spp., sesbania Spp.,<br>Crotelaria Spp.,       | Marigold (100plants/ac-1row/18rows<br>of chili), citronella, Sun hemp, Basil,<br>Intercrop-Red Onion, cowpea, coriander,<br>Cycus (Madu), Derris (Kalawel), Neem,<br>Eupholsia (Daluk) native repellant plants<br>"Mee" a native plant attracts birds. |                                                                                                          |

| PM tool | Activity           | Technology/Practice/methods                                                                                                                                               | Relevance to suppress pest incidence                                                                                                                           | Promotional strategy |
|---------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|         |                    |                                                                                                                                                                           | Pomegranate is a preferred host for the guava butterfly.                                                                                                       |                      |
|         |                    | Pheromones 4-5traps /acre Trap/monitor<br>adult moths                                                                                                                     | Attracts insects and traps. This has to be<br>repeated every 2-3 weeks with fresh<br>Pheromone traps.                                                          |                      |
|         |                    | Wind breaks                                                                                                                                                               | Reduces chances of bruising/ wounding and infections.                                                                                                          |                      |
|         | Weed<br>management | Control weeds to avoid competing with<br>crop plants –Keep crop field weed free for<br>3-4weeks from planting                                                             | Stale bed/row reduces weed growth<br>Row planting facilitates mechanical<br>weeding/ inter-cultivating                                                         |                      |
|         |                    | Identify and destroy weeds that harbour pests & diseases life cycle                                                                                                       | Weeding at vegetative stage will reduce<br>pest population. Enhance healthy plant<br>growth                                                                    |                      |
|         |                    | Prevent spread of weed seeds                                                                                                                                              | Keep boundary bunds free of weeds.<br>Remove left over weeds after<br>harvesting.                                                                              |                      |
|         |                    | Use of mulch –straw, polythene, covering the beds                                                                                                                         | Mulching with Low Density Polyethylene<br>(LDPE) 30 micron thickness by burying<br>both the ends into the soil to a depth of<br>10 cm. will avoid weed growth. |                      |
|         |                    | Intercropping in perennial crops to<br>suppress weed growth by legume<br>crop/Earthening up after irrigation or rain<br>to avoid water logging/destroy<br>weed/weed seeds | Provide manure to soil, avoid pest build<br>up and allow plant to grow vigorously.                                                                             |                      |

| PM tool                 | Activity                      | Technology/Practice/methods                                                                      | Relevance to suppress pest incidence                                     | Promotional strategy                      |
|-------------------------|-------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------|
| Mechanical<br>Practices | Hand/Machine/tool destruction | Manual pulling. Slashers, Hand weeders,<br>hoe, intercultivators- practices used for<br>weeding. | suppress weed growth, control pest attacks<br>by removing host plants    | Participatory<br>training/exposure visits |
|                         | Barriers                      | The stale bed practice                                                                           | reduces the weed infestation                                             | Participatory training to                 |
|                         |                               | Removal of infected plants/parts                                                                 | Egg clusters/pupae/larvae destroyed-<br>reduced pest population          | use of appropriate<br>technologies.       |
|                         |                               | Sprinkler/jet irrigation                                                                         | Water sprinkled on the canopy washes away Aphids/ thrips/ other insects. | PMC to involve                            |
|                         |                               | Hand picking and removing                                                                        | Reduce pest infestation                                                  |                                           |
|                         |                               | Water ghost, wind ghost,                                                                         | Sound keeps away the pests                                               |                                           |
|                         |                               | Sweep nets, Winnowing,                                                                           | insects/pest caught to net or trapped in sticky winnower                 |                                           |
|                         | Traps                         | Bait/ food traps                                                                                 | Especially for rats                                                      |                                           |
|                         |                               | Light traps/ sticky traps/ spore traps/<br>pheromone traps                                       | pests/insects                                                            |                                           |
| Physical practices      | Trenches/furrows              | "V" shape 25cm deep/45 <sup>0</sup> angled trenches<br>with polythene lining                     | Limits movements of caterpillars                                         | Awareness and<br>technical training       |
|                         | Fencing                       | Insect proof nets 1-3meter high                                                                  | Limits pest infestation                                                  |                                           |
|                         |                               | Fabrics/polythene 1-2meter high                                                                  |                                                                          |                                           |

| PM tool | Activity   | Technology/Practice/methods                                                                                               | Relevance to suppress pest incidence                                                                              | Promotional strategy           |
|---------|------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------|
|         | Mulching   | Polymulch- white/grey shiny top and black<br>bottom- UV treated aluminized materials<br>could be used for several seasons | Allow the plants to grow vigorously in<br>weed free soil bed. Indirectly increase the<br>tolerance level to pests |                                |
|         |            | Waxed paper/ plastic cups/ cans placed around the stem of seedling                                                        | Deter feeding of pest on stems (caterpillar)                                                                      |                                |
|         | Inert dust | Lime, salt, sand, wood ash, paddy husk,<br>silica aerogels, Gypsum                                                        | Suppress pest infestation especially in storage                                                                   |                                |
|         | Pneumatic  | Blowing air around cultivation                                                                                            | Effective way to dislodge pests from plants                                                                       |                                |
|         | Bagging    | Waxed paper bags, Polybags of different colours(banana)                                                                   | Protect fruit from sucking pest damages.<br>Increase appearance                                                   |                                |
|         | Heat       | Slow burning of moist beds, especially nursery.                                                                           | Destroy pests (cysts, pupae, caterpillars nematodes, fungi)                                                       | Training and demonstration for |
|         |            | Sun drying/machine drying                                                                                                 | Expose and destroy pests in grains                                                                                | adoption                       |
|         | 1          | Manipulate and reduce moisture                                                                                            | Prevents attack on stored grains                                                                                  |                                |

| PM tool                 | Activity           | Technology/Practice/methods                                                                                                                                                                   | Relevance to suppress pest incidence                                                                                                                                 | Promotional strategy                                                                     |
|-------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Biological<br>practices | Natural<br>enemies | Predators, insectivorous species<br>Parasitoids, organisms live in host<br>Pathogens, Bacteria, fungi, virus<br>Predators; Lady bird beetle, Hover fly, Green<br>lace wing, spider, Red mite, | Predators consume large<br>number of pests directly or<br>lay eggs on host/larvae to<br>feed onPathogens cause<br>infection in host & kills.<br>Number of species of | Increase awareness and train to<br>identify / propagate/ preserve/use<br>natural enemies |

| PM tool               | Activity          | Technology/Practice/methods                                                                                                                                                                                                  | Relevance to suppress<br>pest incidence                                                                                                                                                                                                            | Promotional strategy                                                                                                                                                                                        |
|-----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                   | Parasitoids; Trichogamma spp.                                                                                                                                                                                                | natural enemies in Rice<br>pests – 36,<br>Tea pests – 34,<br>Coconut pests – 18, Grain<br>legume pests – 56. Chilli<br>pests – 24, Cabbage pests<br>– 16, Cucumber pests – 11                                                                      |                                                                                                                                                                                                             |
|                       | Genetical options | Sterile Insect Technique (irradiation technology)                                                                                                                                                                            | controls fruit flies, screw<br>worm, diamond black<br>moth                                                                                                                                                                                         | Enhance farmer knowledge/skills by training/demonstrations and participatory activities                                                                                                                     |
|                       |                   | Naturally occurring and genetically altered bio-<br>insecticides, which include arthropod natural<br>enemies, entomopathogens (bacteria,<br>nematode, virus, and fungus), plant-derived<br>insecticides and insect hormones. | products registered<br>include bacteria (104<br>products, mostly are B.<br>thuringiensis), nematodes<br>(44 products),fungi (12<br>products), viruses (8<br>products), protozoa (6<br>products) and arthropod<br>natural enemies (107<br>products) |                                                                                                                                                                                                             |
| Chemical<br>practices | Pesticides        | Insect repellants/ attractants /inhibitors                                                                                                                                                                                   | Keep insects out of crop<br>area, trap insects, and<br>break the life cycle by<br>destroying one or more<br>stages (egg/ pupae /<br>larvae).                                                                                                       | Train FPOs to build their capacities<br>and confidence in crop production<br>practices and its contribution for the<br>pest and disease control and use<br>chemical only when need arises as<br>determined. |

| PM tool | Activity | Technology/Practice/methods | Relevance to suppress pest incidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Promotional strategy                                                                                                                 |
|---------|----------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|         |          | Toxic chemicals             | Last option- If necessary<br>use "soft" insecticides;<br>Soap sprays (5 tablespoons<br>of soap in 4 litres water).<br>Vegetable oil (1 cup<br>cooking oil; 2 cups water; 1<br>teaspoon dishwashing<br>liquid. Dilute the mixture<br>at 3teaspoons per half litre<br>of water and spray on the<br>infested leaves).<br>Commercial products with<br>petroleum oil:<br>Plant-derived products,<br>such as Neem, derris<br>(Kalawel), pyrethrum and<br>chilli (with the addition of<br>soap).<br>Note, varieties of Derris<br>exist in Sri Lanka that<br>contain 2-3% rotenone,<br>and are effective<br>insecticides. Check if Derris<br>is available locally in your<br>province. | Improve technical knowledge on bio<br>pesticides and plant based extracts/<br>materials for effective control of<br>pests/ diseases. |

| PM monitoring tools          | Activity                                                      | Technology/Practice/methods                                                                      | Relevance to suppress pest incidence                                                             | Promotional strategy                                                         |
|------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Identification               | identify pests/ beneficial insects                            | Determine the families/ species/life cycles/<br>symptoms of damages                              | Differentiate pests and beneficial insects.                                                      |                                                                              |
| Surveillance<br>/Forecasting | Analyse the pest<br>dynamics in a particular<br>crop area     | Observations made through collected pest/<br>beneficial insects regular basis                    | forecast the level of infestation                                                                | Participatory training –<br>increase skills and<br>knowledge                 |
| Diagnosis                    | Proper identification of<br>symptoms/signs of<br>infestations | Determine/detect pest characteristics and disease symptoms connecting the climate change factors | Detect early symptoms<br>of pests & disease                                                      | Improve the skills/<br>knowledge to pest<br>forecasting, maintain            |
| Scouting                     | Regular assessment of pest & disease infestation              | Type of pests/diseases at different crop stages,<br>beneficial insects                           | Identify the pests and<br>beneficial insects<br>balance to determine<br>the level of infestation | records.<br>Train farmer to<br>maintain records and<br>determine the ETL for |
| ETL                          | Population density and its effect on economic yield           | Published ETLs used as base to justify the need for applying a control measure                   | Economic importance<br>of pest dynamic<br>identified                                             | decision making on pest control measures.                                    |

# 7. Stage- wise crop fact sheets for promotion/ adoption of PM tools in FPOs under ATDP provinces

#### Fact sheet 01

#### Chilli – Capsicum annum

Provinces cultivated- North Central, Northern and Eastern.

#### **Ecological regions -**

| Province      | Ecological regions   | Chili verities cultivated                                   |
|---------------|----------------------|-------------------------------------------------------------|
| North Central | DL-1                 | MICH-2,MI-2,KA-2,Galkiriyagam selection                     |
| Northern      | DL-1,DL-1d,DL-3,DL-4 | Super (874) indium, MI 2, Jaffna selection (similar to PC1) |
| Eastern       | DL-1,DL-2,DL-2a      | PC-1                                                        |

Chilli can be raised from sea level up to 2000 meters. Optimum temperature for yield of fruit is  $24^{\circ}$  C. When the nocturnal temperature is below 10 ° C fruit set is restricted. Fruit weight, length, girth and pericarp thickness is high at  $25^{\circ}$  C by day and  $18^{\circ}$  C by night.

#### Pests & diseases of provincial interest-

| Description | Identified organisms                                                                                                                                     |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pests       | Thrips, White fly, Mites, Aphids, Pod borer, Nematodes                                                                                                   |
| Diseases    | Damping off, Leaf curl complex, Virus, collar rot, Leaf spot, Anthracnose, Coaniphora blight, Powdery mildew.                                            |
| Weeds       | Cyperus rotundus, Amaranthus Virids, Digitaria spp., Desmodium blue (Wal ratakaju), Wal<br>kottamalli, Protulaca oleracia, Eleusine indica, Seteria Spp. |

#### Stage-wise crop PM by maintaining PH (PHM)

| Stage       | Management                                                                      | Activity (Cultural (Cu)/ Mechanical /Physical<br>(MP) /Biological ( Bi) /Chemical (Ch.))                                                                        |
|-------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land prepn. | Soil health - Soil borne fungus,<br>nematodes, and resting stages of<br>insects | Deep ploughing/ harrowing/ levelling. Expose<br>soil borne pests/ nematodes. (Cu)<br>Neem cake 100kg/ac when transplanting (Bi)                                 |
|             | Minimize weeds,                                                                 | Stale bed technique limit the weed growth. (Cu)<br>Poly mulch (0.45 mm thickness) over soil bed<br>for 3wks(MP)                                                 |
|             | Improve soil nutrients                                                          | FYM 25t/Ac add during land preparation (2-<br>3wks BTP) (Bi). Soil testing –identify nutrient<br>status to determine recommended NPK and<br>micro nutrients(Ch) |

| Nursery       | Damping off – /nursery beds and                                                                             | Facilitate drainage, use raised beds height                                                                                                                                                                                                                                                                        |
|---------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Pre –emergence and post emergence                                                                           | above 15cm.(Cu)<br>spread by Oospores/sclerotia in soils carried<br>through irrigation water                                                                                                                                                                                                                       |
|               | Field-ready and better rooted seedling.<br>Healthy/Vigorous plants                                          | Raising seedlings in planting trays of individual<br>cells Sterilized planting media (compressed<br>pellets of coir dust). (Cu).<br>Avoid using soil beds/use planting trays. Resist<br>pest & disease attack, avoid damping off and<br>free from weed(Cu)                                                         |
| Transplanting | Nutrients based on soil testing<br>Increase phosphorous absorption.<br>Planting.<br>Micro irrigation system | Basal application of NPK and micro nutrients.<br>(Ch.) Root dip treatment phosphorous<br>solubilizing bacteria (Bi). Recommended spacing<br>60x45cm two plants/hill. Sprinkler Irrigation 5-<br>10 day's intervals. (Avoid flood irign.). May need<br>daily irrigation in 1 <sup>st</sup> week after transplanting |
| Vegetative    | Plant nutrients                                                                                             | 45 DAP after 20Kg N +10Kg K, 60 DAP and 75<br>DAF similar quantity. NAA 2-3 at 15 day<br>intervals reduce flower drop. Foliar spray of<br>micronutrients if any deficiency symptoms.(Ch)                                                                                                                           |
|               | Reduce weed growth                                                                                          | Polymulch 30 micron cover planting beds.<br>Pulling/burying between rows and tightly<br>sticking to bed surface is essential (Cu).                                                                                                                                                                                 |
|               | Thrips                                                                                                      | Barrier crop –sesbania grandiflora, conserve<br>predators –Hover flies, mired bug, Neem cake<br>(Bi). (or Ch if<br>required)                                                                                                                                                                                       |
|               | Aphids                                                                                                      | Conserve parasitoids - Aphidius colemani,<br>Aphelinus spp. Conserve predators Syrphid/<br>hover flies, green lacewings (Mallada basalis,<br>lady beetles, spiders, wasps.                                                                                                                                         |
|               | Mites                                                                                                       | Border crop with two rows of Maize at every<br>0.5ac (Cu), Conserve predators- predatory mite<br>(Amblyseius ovalis), predatory bug (Orius spp.),<br>spiders. If the incidence of mites is low, spray<br>neem seed powder extract 4% at 10 days<br>interval.                                                       |
|               | White fly                                                                                                   | Sticky traps-pale yellow –Monitor/suppress<br>(Cu), micro irrigation-sprinkler at 0600 hrs and<br>0200 hrs. Using bug blaster attachment(MP),<br>Predators-Lady bird, lacewigs, bio oils,(Bi)                                                                                                                      |
|               | Pod borer                                                                                                   | Field sanitation/ rouging/ Nylon netting/ fabric cover/ intercrop (cowpea, onion, coriander, black gram. Border crop –Maize 4rows around the field. Repellent plant- Basil, pheromone                                                                                                                              |

|              | trap crops- Marigold                 | traps 4-5/acre and replace every 2-3 wks.<br>Ovipositional trap crops —marigold-<br>100plants/acr in ratio of 1MG row for every 18<br>rows of chili (Cu). Parasitoids -Tetrastichus spp.<br>(egg), Telenomus spp. (egg), Campoletis<br>chlorideae (larval). Conserve predators - King<br>crow, common mynah, wasp, dragonfly, spider,<br>fire ants, , earwigs, ground beetles.(Bi) |
|--------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Choeanephora blight                  | Adopt recommended spacing to maintain adequate air circulation/ grow resistant varieties.                                                                                                                                                                                                                                                                                          |
| Reproductive | Nutrients                            | Micronutrient deficiency should be corrected by foliar spray of particular micronutrient.                                                                                                                                                                                                                                                                                          |
|              | Weeds                                | Left over weeds should be removed from the field to avoid further spread of weed seeds.                                                                                                                                                                                                                                                                                            |
|              | Fruit rot/die back                   | Transplant pathogen free plant is key, use                                                                                                                                                                                                                                                                                                                                         |
|              | Bacterial blight                     | hygiene, weed free fields, good drainage.                                                                                                                                                                                                                                                                                                                                          |
|              | Anthracnose                          | Alternate host-tomato, root crops, mango,<br>Papaya. Avoid overhead irrigation as water<br>splash spreads these fungi, Control weeds and<br>volunteer capsicum and chilli plants. Crop<br>rotation, ploughing in deep and remove<br>infected crop residues.                                                                                                                        |
|              | Thrips, Aphids, White fly, pod borer | measure same as vegetative stage                                                                                                                                                                                                                                                                                                                                                   |

### Fact sheet 02

Passion fruit – Passiflora Spp. (P.edulis edulis/P.edulis flavicarpa)

Varieties; Horana Gold/Yellow/Purple



Provinces cultivated- North Central, Northern and Uva

### **Ecological regions**

| Province      | Ecological regions | Passion fruit varieties cultivated |
|---------------|--------------------|------------------------------------|
| North Central | DL-1               | Yellow                             |
| Northern      | DL-1,DL-1d,        | Yellow                             |
| Uva           | IL-1C,IL-2,DL-1    | Horana Gold & Yellow               |

PF can be raised from sea level up to 3000 meters. Optimum temperature for fruit set is  $22 - 32^{\circ}$  C. Night temperature below 10  $^{\circ}$  C fruit set is restricted. Well distributed Rainfall of 1000-1500mm/year required for healthy growth and better yield performance. Cultivated in sandy loam/ latertic/ clay loamy soils with a pH of 6.0-6.5.

### Pest & diseases of provincial interest-

| Description | Identified organisms                                                                                                                                  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pests       | Waxy scale insect (Gascardia brevicauda, Ceroplastes destructer), Beetle-Vine girdler-                                                                |
|             | Thrips, White fly, Mites, Aphids, Nematodes                                                                                                           |
| Diseases    | Mosaic virus, anthracnose, mildew Damping off, collar rot, Leaf spot, Anthracnose,                                                                    |
|             | Coaniphora blight, Powdery mildew.                                                                                                                    |
| Weeds       | Cyperus rotundus, Amaranthus Virids, Digitaria spp., Desmodium blue (Wal ratakaju), Wal kottamalli, Protulaca oleracia, Eleusine indica, Seteria Spp. |

| Stage       | Management                                                                                       | Activity (Cultural (Cu)/ Mechanical /Physical<br>(MP) /Biological (Bi) / Chemical (Ch.)).                                                                                                                                                                                                                          |
|-------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land prepn. | Soil health - Soil borne fungus,<br>nematodes, and resting stages of<br>insects,                 | Deep ploughing/ harrowing/ levelling. Expose<br>soil inhabited pests/ nematodes/pathogens.<br>Trimming all bunds/destroy any existing rodent<br>burrows, (Cu). Uproot/collect all infested/dried<br>plant parts and destruction to avoid spread of<br>pest/diseases, (MP).                                         |
|             | The soils should be well-drained                                                                 | Plants will not withstand waterlogging or flooding.                                                                                                                                                                                                                                                                |
|             | Minimize weeds,                                                                                  | Remove all weed roots/parts before preparing planting holes, (Cu). Stale bed technique to reduce weed growth at planting time.                                                                                                                                                                                     |
|             | Improve soil nutrients –facilitate<br>healthy plant growth and resistance<br>for pest & diseases | Each Planting holes- <i>PH</i> - (60x60x60 cm) filled<br>with 10kg compost, add Mychorrhiza 5-10gm<br>and FYM 10kg ( <i>poultry manure 5kg</i> per <i>PH</i> at<br>least 2-3 weeks before planting. (Bi). Soil testing<br>–identify nutrient status, and determine<br>recommended NPK and micro nutrients (Ch). If |

| Stage         | Management                                       | Activity (Cultural (Cu)/ Mechanical /Physical<br>(MP) /Biological (Bi) / Chemical (Ch.)).                                                                                                                                                                                                                                                                   |
|---------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                                  | soil pH is below 5.5 add dolomite, 0.5kg/PH annually.                                                                                                                                                                                                                                                                                                       |
|               |                                                  | 2-3 days before planting add RP 80gm,MOP<br>40gm, Urea 45gm & kieserite-Mg & S- (soluble<br>form Epsom salt)55gm per <i>PH</i>                                                                                                                                                                                                                              |
|               | Root rot/crown rot (Fusarium wilt)               | Keep soil pH Acidic at 6-6.5.                                                                                                                                                                                                                                                                                                                               |
|               | affect the plants in nursery and field           | Apply manure and lime in the holes/surroundings to reduce the soil acidity effects. (Cu). Avoid planting in previously diseased fields. Always use healthy/quality assured seedling, avoid injury to plants during weeding, and Keep the field andits periphery weed free. Sterilize the planting media for nursery.                                        |
| Nursery       | Plant Nursery and seedlings                      | Raised seedlings in separate pots (6" h x 4" d)<br>through cuttings or seeds. Cutting provides<br>uniform fruit characteristic. Cutting to be<br>obtained from disease free mother plants.<br>Use sterilized potting media (compressed<br>pellets of coir dust). (Cu).                                                                                      |
|               | Field-ready and better rooted vigorous seedling. | Individual pot/cells resist pest & disease<br>spreading/attack. Healthy/Vigorous plants free<br>from weed(Cu)                                                                                                                                                                                                                                               |
| Transplanting | Planting/Spacing                                 | Recommended spacing 3-4x 3-4m row-to- rao<br>2m between rows and 4.5m in the row (plant to<br>plant is the recommendation and plant to<br>plant.<br>Sprinkler Irrigation 5-10 day intervals. (Avoid<br>flood irign.). Daily irrigation in the first week<br>after planting would be better.                                                                 |
|               | Support structure/training vines                 | Iron/ concrete / bamboo/ wooden posts of<br>2.5m ht. Trellis run across north –South<br>direction East – Westor across the slopes to<br>facilitate maximum exposure to sunlight (help<br>reducing soil borne disease).<br>Prune laterals before touching the ground<br>(diseased parts should be pruned with separate<br>knife to avoid spread of diseases. |
| Vegetative    | Plant nutrients                                  | 2,6 & 10 MAP RP 80gm, MOP 40gm, Urea 45gm<br>PH & kieserite-Mg & S- (soluble form Epsom                                                                                                                                                                                                                                                                     |

| Stage | Management    | Activity (Cultural (Cu)/ Mechanical /Physical<br>(MP) /Biological (Bi) / Chemical (Ch.)).                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |               | salt) 55gm per <i>PH</i> at 10 <sup>th</sup> month.(Ch).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | Weed          | Mulch around root zone, remove all weeds<br>around the plants manually (Cu). Keep the field<br>weed free to reduce host plants for pests.<br>Intercrop with Turmeric, Ginger, Chili, Mustard,<br>Coriander, Green leafy Vegetables                                                                                                                                                                                                                                                                                                                                     |
|       | Thrips        | Destroy crop debris. Enhance parasitic activity<br>by avoiding chemical spray, when 1-2 larval<br>parasitoids are observed. Use blue sticky trap<br>for thrips @ 4-5 trap/acre. Avoid intercropping<br>with legumes (Bi)                                                                                                                                                                                                                                                                                                                                               |
|       | Aphids        | Avoid using high dose of Nitrogen, Yellow sticky<br>traps 4-5 trap/acre (Cu). 1st instar larvae of<br>green lacewing 4,000 Nos/acre. Spraying with<br>tobacco decoction (1 kg tobacco boiled in 10 lit<br>of water for 30 minutes and making up to 30 lit<br>+ 100 g soap). Collect insects using wet cloth<br>pieces/ gunnies/ clay tiles placed on field to trap<br>the insects, Trap insects using baits. Conserve<br>parasitoids - Aphidius colemani, Aphelinus spp.<br>Conserve predators Syrphid/ hover flies, green<br>lacewings, lady beetles, spiders, wasps. |
|       | Scale insects | Destroy infected plants/ parts, Hand scrape<br>remove insects from young vines, field<br>observation. Conserve Aphytis spp.<br>Sugary excretes of scales attract black fungus<br>infestation.                                                                                                                                                                                                                                                                                                                                                                          |
|       | Mites         | Periodic inspections of the orchard and other<br>adjacent hosts, including weeds, are essential to<br>verify the occurrence and first symptoms of<br>mite attacks (Cu).                                                                                                                                                                                                                                                                                                                                                                                                |
|       |               | Neem seed powder extract 4% at 10 days<br>interval. Border crop with two rows of Maize at<br>every 0.5ac (Cu), Conserve predators- predatory<br>mite (Amblyseius ovalis), predatory bug (Orius<br>spp.), and spiders.                                                                                                                                                                                                                                                                                                                                                  |
|       | Mealy bugs    | Prune affected shoots during winter Maha<br>Season?, Destroy ant colonies,<br>Intercrop coriander to attract wasps (Cu),<br>Use sticky barrier 0.5cm length on trunk (MP),                                                                                                                                                                                                                                                                                                                                                                                             |

| Stage        | Management                         | Activity (Cultural (Cu)/ Mechanical /Physical<br>(MP) /Biological (Bi) / Chemical (Ch.)).                                                                                                                                                                                                                                                                                                                                                |
|--------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                    | Use lady bird beetle 10 per plant (Bi)                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | White fly                          | yellow sticky traps for whitefly, @ 4-5 trap/acre<br>–Monitor/suppress(Cu), micro irrigation-<br>sprinkler/using bug blaster attachment (MP),<br>Predators-Lady bird, lacewigs , bio oils,(Bi)                                                                                                                                                                                                                                           |
| Reproductive | Nutrients                          | 14 <sup>th</sup> , 18th, & 22 <sup>nd</sup> MAP recommended to apply<br>Urea 90gm, TSP 90gm and MOP 70gm per plant.<br>Therafter, at every 4 month intervals apply Urea<br>135 gm, TSP 130gm and MOP 105gm. Zinc and<br>Boron are most used micronutrients – any<br>deficiency symptoms should be corrected by<br>foliar spray. Tally with the soil testing reports<br>and nutrient availability in the soil to make any<br>adjustments. |
|              | Weeds                              | Apply mulch around the plant root zone<br>Left over weeds should be removed from the<br>field/surrounding to avoid further spread of<br>weed seeds.                                                                                                                                                                                                                                                                                      |
|              | Fruit Fly                          | Elimination of over-ripe fruits in which the flies<br>breed and on which the adults feed. Removal of<br>wild host plants. Installation of 05 traps/ac.,<br>Hanging of bottle traps containing 100 ml of<br>water emulsion of methyl eugenol (0.1%) during<br>fruiting season.                                                                                                                                                            |
|              | Anthracnose                        | Use recommonded spacing, install wind<br>barriers, trimming vines, and reduce the density<br>of pathogens. Maintain crop/ field sanitation.<br>Avoid overhead irrigation as water splash<br>spreads these fungi, Control weeds and                                                                                                                                                                                                       |
|              | Thrins Anhids White fly nod horer  | volunteer capsicum and chilli plants. Crop<br>rotation, Ploughing in deep and remove<br>infected crop residues.                                                                                                                                                                                                                                                                                                                          |
|              | Timps, Apinus, white ny, pou borer | Incasure same as vegetative stage                                                                                                                                                                                                                                                                                                                                                                                                        |

Published by:

The Project Director Agriculture Sector Modernization Project

Ministry of Agriculture No: 288, Sri Jayawardenapura Mawatha, Rajagiriya, Sri Lanka.

Report Prepared by: Sampath and Prasad Holdings (Pvt) Ltd., 74/6, Stanley Place, Pepiliyana Road, Nugegoda, Sri Lanka. E-mail: sandpholdings@gmail.com